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Multiobjective Optimum Design in Mixed Integer and Discrete
Design Variable Problems

P. Hajela* and C.-J. Shiht
University of Florida, Gainesville, Florida

A min-max variant of the global criterion approach is proposed to obtain solutions to multiobjective optimum
design problems involving a mix of continuous, discrete, and integer design variables. This modified global
criterion approach is used in conjunction with a branch-and-bound algorithm, where the latter was configured
especially to accommodate a mix of integer and discrete design variables. The use of a weighting strategy with
the proposed method allows the generation of a set of Pareto optimal (noninferior) solutions for both convex
and nonconvex problems. The solution strategy is applied to structural design problems involving vector design
functions.

Introduction

FORMAL mathematical methods of optimization have
found increased applications in a multitude of engineering

design problems. In particular, the nonlinear programming
approach and the optimality criteria method have been estab-
lished as flexible and robust solution strategies for such design
problems.1'2 Decisions in engineering design typically require
allocation of resources to satisfy multiple, and frequently
conflicting, requirements. Despite the recognized multicrite-
rion nature of most design problems, the bulk of research
effort has been expended in developing efficient optimization
methods for scalar objective function problems. In such an
approach, one criterion is selected as the objective function,
and the tradeoff among the remaining criterion is resolved by
formulating appropriate design constraints. The apparent sim-
plicity afforded by this method is attractive, but an effective
case can be made against the use of such an approach. One can
argue in favor of a method that deals with multiple criteria,
stipulating a "natural" separation of criteria and constraints
in any design problem. Furthermore, a treatment of con-
straints as criteria provides a systematic approach to learn
about the extent of the feasible set. In other words, when a
multicriterion optimum is obtained, a tradeoff pattern
emerges, wherein no criterion may be improved without ad-
versely affecting another. Furthermore, it is also known that
the treatment of a criterion as constraints does not yield the
same optimum design as would be obtained when solving the
optimum design problem as one possessing multiple objec-
tives.

Multicriteria programming has emerged as a subject of spe-
cial interest in mathematical nonlinear programming. One of
the earliest efforts in this area may be attributed to an Italian
economist Pareto, who, in 1896, introduced the concept
within the framework of welfare economics.3 The ramifica-
tions of this work in optimization theory, operations research,
and control theory were recognized only in the late 1960s.
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Applications of multicriteria optimization in engineering de-
sign have also been recognized. Baier4'5 examined structural
design problems in which weight and total energy in several
loading conditions are considered as the design criteria. Pareto
optimal designs of truss structures have been examined by
Koski.6'7 Numerous examples of design of mechanical struc-
tures have been presented, and works of Osyczka8'9 and Rao
and Hati10 are typical of such applications. Another interest-
ing application of a multiobjective design problem in vis-
coelasticity is presented in Ref. 11. In addition to several
component design problems in aerospace engineering, multi-
objective design can prove invaluable in a truly multidisci-
plinary design environment afforded by the problem of air-
plane preliminary design. It does appear, however, that the
full potential of multicriteria optimization has not been ex-
ploited in engineering design.

The present paper proposes an approach for multicriteria
design that is derived from a global criterion approach12 and is
especially designed for problems where the design space could
consist of continuous, discrete, or even integer design vari-
ables. A prerequisite to obtaining a solution to this problem is
the availability of a methodology for solving mixed integer
discrete optimization problems with a scalar objective func-
tion. Such problems have been approached frequently by con-
sidering all design variables as continuous, obtaining the opti-
mum solution, and then rounding the specific variables, either
up or down, to the nearest integer or discrete point. This
simple rounding procedure often fails completely, resulting in
either a suboptimal design or, in some cases, even generating
an infeasible design.13

Early efforts in obtaining a systematic solution to the in-
teger linear programming problem are available in Ref. 14.
The branch-and-bound algorithms that emerged later were
based on enumeration of space of all feasible integer solu-
tions. The general framework for solving an integer program-
ming problem involves decomposing the original problem into
subproblems, modifying constraints to enlarge feasible do-
mains, and finally a process referred to as fathoming. The lat-
ter involves checking a solution for feasibility and establish-
ing optimality. The basic strategy used in this work for solving
the nonlinear mixed integer programming problems is a vari-
ant of the approach proposed by Garfinkel and Nemhauser.15

The strategy consists of a systematic search of continuous
solutions in which the discrete and integer variables are forced
successively to assume specific values. The logical structure of
the set of solutions was constructed as a binary tree. A modi-
fied feasible directions algorithm16 was used in the solution of
the continuous nonlinear programming problem, with piece-
wise linear representation of the objective function and con-
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straints. Details of this approach and a more detailed review
of methods in this discipline are presented in Ref. 17.

Subsequent sections of this paper discuss the mathematical
statement of the optimization problem. The optimization
methodology is discussed with emphasis on formal proof of
applicability, and the approach is implemented for purposes
of concept verification. Optimum design results obtained for
illustrative problems are also presented.

Multicriteria Optimum Design
The strategy used for multicriteria optimization in the pre-

sent work can be classified broadly as belonging to a category
of solution methods with no articulation of preference. In
such an approach, also referred to as a global criterion
method,12 a metric function is formulated to represent the
distance between the ideal solution and the optimum solution,
and a minimization of this function results in the true opti-
mum. For a problem involving m criterion functions, the ideal
solution is an m -dimensional vector, the components of which
are the optimum values of the individual criteria. These opti-
mum values are obtained by considering each of the criteria
separately in a scalar optimization problem. The application
of the global criterion method is best illustrated by the sketch
in Fig. 1, which shows feasible and infeasible space for a
two-criterion function. If the ideal solution were also feasible,
there would be no additional effort required. However, this
ideal solution is typically infeasible, and a feasible design
closest to the ideal solution is sought. The Pareto optimal
solution so obtained is such that the design variable vector
cannot be altered without adverse effects on any one of the
candidate criteria.

One can define a vector objective function f ( x ) dependent
on the design variable vector jc, where

(1)

subject to the prescribed design constraints

X=[xl,x2,...,xn]T

and/(JO is the /th criterion function. If fjd(x) is the ideal
solution corresponding to the /th criterion function, the opti-
mal solution is obtained by minimizing a global criterion
function of the following form:

f ^CX)

(2)Minimize da = I £ \ft(x)-Jjd(x)\°

Pareto solutions

Domain of feasible
solutions

f i d (X )

f 2 (X )
Fig. 1 Graphical representation of Pareto (noninferior) solutions in
a problem where two criteria must be minimized.

(3)

(4)

Here da is a distance metric with a 1 <a< oo. Typical choices
of a= 1 or 2 have been used in the literature.18'19 Numerical
computations are better conditioned if a normalized objective
function vector/(;c) is used, where

(5)f(x)=\fl(x)J2(x),..Jk(x)

and the individual components of this vector function are
obtained as follows:

fi(x)-mmfi(x)
~maxfi(x)-mmfj(x)' 1 = 1,2,*..,* (6)

In the present approach, a relative deviation metric is pre-
ferred over the absolute deviation represented by Eq. (2). The
metric function to be minimized is stated as

f(^fi(x) (7)

C START J

Initialize design. Treat all design variables
as continuous and optimize each candidate
criterion separately.
Form ideal solution vector flc*(X) .

Select weighting coefficients.
Default is to weight each criterion
equally, i.e. u>^= 0.5

Create equivalent optimization problem
Min 13
S.T.

- f..id(x)

fiid(x)
< 0

1=1,2,
gj(X) < 0
hk(X) = 0

where p is a scalar.
Solve this optimum design problem.
If X contains a mix of integer and
discrete variables, use code NMIDOPT
see Ref.[17]

Fig. 2 Flow diagram representation of multiobjective optimization
combined with code NMIDOPT for mixed integer and discrete design
variable problem.
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Fig. 3 Definition of design variables and loading for simply sup-
ported I-beam.

and the summation in the metric function can be written as

da=
a] l/«

(8)

which in the limit of a—oo reduces to the following form:

da = max, \fi(x)-J}A

' I ff(x)
/ = 1,2,...,A (9)

Minimization of the metric function results in a commonly
encountered min-max problem in multiobjective optimization.
Therefore, the mathematical statement of the optimization
problem may be written as follows:

mmx max/ i = 1,2,...,A: (10)

The solution to the preceding optimization problem yields the
best compromise solution, in which all criteria are considered
equally important. Use of weighting coefficients can be intro-
duced in conjunction with this method to rank the importance
of the candidate criterion, and the min-max problem is re-
stated as follows:

mmx max/ co/ *»•(*)-.//*(*) (11)

where co/ is the weighting coefficient representing the relative
importance of the /th criterion.

In a situation where the design variable set is a mixture of
continuous, integer, and Discrete design variables, the choice
of an ideal solution for use in the global criterion method is an
important consideration. In the present work, the ideal solu-
tion was selected as the one obtained by treating all design
variables as continuous. The mathematical basis for this selec-
tion is as follows.

First, a scalar variable, /3, is introduced to facilitate the
transformation of the min-max problem of Eq. (10) into an
equivalent scalar optimization problem.

f2(X)

0,30 -

0,22

0,14 -

0,06

Domain of
feasible solutions

200 240 280 320 f1(X)

Fig. 4 Graphical representation of the Pareto set of solutions for
I-beam problem.

Minimize ft

subject to the following additional constraints:

(12)

(13)

Since the first term on the left-hand side of Eq. (13) is always
positive, the smallest value of ft would be obtained in a situa-
tion when the equality is strictly satisfied.

fi(x) -i
co/

(14)

It can be argued further that the ideal solution obtained by
minimizing ff (x) with all design variables treated as continu-
ous will always be smaller or equal to the function value
obtained by imposing discrete or integer requirements on some
design variables. Hence,

fi(x) >1
/}*(*)"

and Eq. (14) can be arranged as follows:

(15)

(16)

From Eq. (16) one can conclude that a smaller value of f}d(x)
will minimize the function ./)•(*) when the scalar variable ft is
minimized. Therefore, the ideal solution should be obtained
by treating all design variables as continuous.

Illustrative Examples
A flowchart for the algorithm described in the preceding

section is shown in Fig. 2. The algorithm was first imple-
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mented in the design of a simply supported beam,9 as shown in
Fig. 3. The objective of the design problem was to select the
design variables x\, x2, x3, and x4 to minimize both the weight
of the beam and its deflection at the midspan under the
applied loads. The mathematical statement of the optimum
design problem can be written as follows:

where

Minimize (fiJ2)

= 2*2*4 (17)

(18)

(19)

(20)

Here P = 600 kN; L=200 cm; £ = 2xl04 kN/cm2; ob = 16
kN/cm2 is the permissible bending stress; My and Mz are the
maximal bending moments in the y and z directions, respec-
tively; and Zy and Zz are the section moduli. Additional side
constraints are also imposed in the design problem.

^4
2+3xi(x1-2x,)]}/12

subject to the strength constraints:

Mv A

10<jti<80,

0.9<*3<5,

10<*2<50

0.9<*4<5

(21a)

(21b)

A modified feasible usable search direction technique was
used to obtain the separately attainable minimum of each
component of the objective function as follows:

) = 127.443, = 0.05934

) = (61.78, 40.81,0.9, 0.9)

) - 850.0, /2(4d
}) = 0.005903

) = 80.0, 50.0, 5.0, 5.0)

Hence the ideal solution vector can be written as

/<id> = (127.443, 0.005903)

Table 1 Representative subset of Pareto optimal (noninferior)
solutions for I-beam design problem (La?/ = 1)

Case
No.

1
2
3
4

Weighting
coefficient

(w 1,0)2)
(0.45,0.55)
(0.55,0.45)
(0.65,0.35)
(0.08,0.20)

Design variables
X = (X\,X2,X3,X4)

(79.99,49.99,0.9,2.39)
(80.0,50.0,0.9,2.083)
(79.99,50.0,0.9,1.791)
(80.0,39.79,0.9,1.725)

Objective
function

/(JQ = (/l/2)

(307.53,0.0127)
(276.55,0.0143)
(247.88,0.0163)
(206.14,0.0205)

Using a weighting coefficient strategy, one can obtain a set of
Pareto solutions, as illustrated in Fig. 4. All points in the
interior of the feasible space represent inferior solutions, be-
cause one can always find a point on the boundary for which
both criteria can be improved simultaneously. Points on the
boundary, however, belong to a noninferior, or Pareto set. A
subset of these Pareto optimal solutions is presented in Table
1. If more alternatives are required between points 1 and 2, the
weighting coefficients are adjusted to assume values between
0.45 and 0.55. Representative alternative solutions are indi-
cated by points a-e in Fig. 4.

The problem was then modified to introduce discrete andin-
teger design variables. Variables x3 and x4 were chosen to be of
the discrete type, assuming values between 0.9 and 5.0, in

Fig. 5 Configuration and loading of composite laminated beam.
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Fig. 6 Geometrical configuration of multilayered laminated struc-
ture.

Table 2 Optimum results for I-beam problem for three different
_____variable types (weighting coefficient co/ = 0.5 used)._____

Case description
X=(Xl,X2,X3,X4)

Objective function
) = (/!/2)

All real continuous variables
^ = (79.99,49.99,0.9,2.235)

*3 and x4 are discrete type
^ = (80.0,48.69,0.9,2.30)

x3 is integer type; x4 discrete type
AT = (80.0,49.72,1,2.20)

(291.43,0.01351)

(291.85,0.01350)

(294.38,0.01362)

Table 3 Set of Pareto optimal solutions for Scotch
composite structure

Weight coefficient
(0.30,0.70)
(0.30,0.70)

(0.50,0.50)
(0.50,0.50)

(0.70,0.30)
(0.70,0.30)

Weight, N
2.3698
2.4365

2.1276
2.139

1.8322
1.889

z deflection, mm
0.02582
0.02674

0.03584
0.03585

0.05602
0.05177

Variable type
All continuous

Mixed
All continuous

Mixed

All continuous
Mixed



674 P. HAJELA AND C.-J. SHIH AIAA JOURNAL

Table 4 Multiobjective optimum results of mixed integer and
discrete design variables for two different composite structures

Fiber
Scotch
T300

t,
0.

0.

mm
,225

125

M
6
7

N2

24

39

N3

21

19

Final
01, deg
-8.9
-1.1

optimum
02, deg

6.1
0.0

design
03, deg
-11.7

-4.81

Vff
0.5

0.72

F, N
2.139

1.273

Az, mm
0.0358

0.0234

increments of 0.1. Another modification involved treating x3
and #4 as variables of the integer and discrete types, respec-
tively. The optimum results obtained are summarized in Table
2.

The second example problem pertains to the design of a
cantilever composite laminate beam. The beam and the ap-
plied, concentrated, and distributed loads are shown in Fig. 5,
with details of the geometrical configuration of the multilay-
ered laminate shown in Fig. 6. The beam structure was ana-
lyzed as a special case of a symmetric laminated composite
plate; details of the analysis are available in Ref. 17. The
design of the laminated composite depends on material pro-
perties, as well as geometry and configuration variables such
as lamina thickness, number of plies, fiber orientation in each
ply, and the volume fraction. These variables are of both the
continuous and discrete types. With reference to Fig. 6, the
depth of the beam can be described by three layers, with each
layer containing NI, 7V2, and 7V3 plies of thickness t. The fiber
orientations in these layers are given by 8\, 02> and 03, respec-
tively. The optimization problem is formulated as a multidi-
mensional nonlinear programming problem with continuous,
discrete, and integer variables. The mathematical problem
statement is as follows:

Minimize

where

subject to

A^<L/1000, co!>125Hz, o;2>750Hz,

(22)

(23)

cm
(24a)

(24b)

Here F is the structural weight and Az the tip deflection in the
z direction; /is the moment of inertia relative to the midplane;
and EX is defined in Ref. 20 as the effective beam modulus of
the laminated beam.

In the preceding formulation, the width b and length L were
chosen as 2 cm and 25 cm, respectively. The density of the
composite pc was defined in terms of fiber density p/, matrix
density pm, and the fiber volume fraction J^as follows:

(25)

The thickness of each ply: <\vas considered to be a discrete
variable, with admissible values selected from the following
set: :-;, ^;.i:

f = (0.1, 0.125, (te'15, 0.175, 0.225, 0.275, 0.325, 0.375)

The number of plies in the three layers were considered as
integer variables and allowed to assume values between 3 and

100. The fiber orientations were allowed to vary between -90
and +90 deg, and the volume fraction bounded between 0.5
and 7T/2V3. The fiber orientations and volume fraction are
variables of the continuous type. The constraints defined in
Eqs. (24) include a tip displacement in the y direction, lower
bounds on the first and second natural frequencies, an upper
bound on the depth of the beam, and a strength constraint
obtained on the basis of the Tsai-Hill failure theory.21 In the
strength constraint, OLU and aTU are the allowable tensile
strengths in the longitudinal and transverse directions, respec-
tively, and TLTU is tne allowable shear strength. These allow-
able stress levels are listed in Ref. 17. For the optimization
problem described earlier, the initial design was selected as
follows:

f=0 .2mm, 7V3=14

! = 10 deg, 02 = 40 deg, 03=-30deg, = 0.5

The ideal solution was obtained by treating all design variables
as continuous and, for two representative fiber materials, was
as follows:

/d = (0.93095 TV, 0.01548 mm) for Scotch glass

= (0.34428 TV, 0.00633 mm) for T300 graphite

These ideal solutions were used in conjunction with the
weighting coefficient technique to generate a series of Pareto
optimal solutions for different weight coefficients. Table 3
shows representative results for a Scotch-epoxy composite
structure for both continuous- and mixed-type design vari-
ables. Optimum design variables for Scotch and T300 fibers
for the case when both criteria are equally weighted are shown
in Table 4.

Concluding Remarks
The paper presents a methodology for solving multiobjec-

tive optimization problems that involve a mix of discrete,
continuous, and integer design variables. The method com-
bines a discrete variable variant of the global criterion ap-
proach with a branch-and-bound strategy. The mathematical
basis for the approach is also presented. For discrete and
integer design variable problems, it is shown that the ideal
solution required in the global criterion strategy is one that
corresponds to a continuous optimal solution. The paper has
also attempted to establish the advantages of a multicriterion
optimization strategy in relation to the conventional approach
of using a scalar objective function and accounting for other
competing criteria by design constraints. The method devel-
oped in this work was implemented on illustrative multiobjec-
tive design problems with encouraging results.
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